Refine Your Search

Topic

Author

Search Results

Technical Paper

Future Diesel-Powertrain in LCV and SUV-Electrified, Modular Platform with Focus on Emission, Efficiency and Cost

2021-04-06
2021-01-0635
Considering worldwide future emission and CO2-legislation for the Light Commercial Vehicle segment, a wide range of powertrain variants is expected. Dependent on the application use cases all powertrain combinations, from pure Diesel engine propulsion via various levels of hybridization, to pure battery electric vehicles will be in the market. Under this aspect as well as facing differing legal and market requirements, a modular approach is presented for the LCV and SUV Segment, which can be adapted flexibly to meet the different requirements. A displacement range of 2.0L to 2.3L, representing the current baseline in Europe is taken as basis. To best fulfill the commercial boundaries, tailored technology packages, based on a common global engine platform are defined and compared. These packages include engine related technical features for emission- and fuel consumption improvement, as well as electrification measures, in particular 48V-MHEV variants.
Technical Paper

Increased 2-Wheeler Development Efficiency by Using a New Dedicated Test System Solution

2019-01-09
2019-26-0348
Fuel consumption is the most important contributor to the total cost of ownership for mass produced motorcycles. Therefore, best fuel economy is one main influencing criteria for a decision to purchase motorcycles. Furthermore, increasingly stringent emission legislations limit and additional OBD requirements must be fulfilled. A new combined test approach has been developed that minimizes accuracy losses in the development process which compensates for the variability of driving behavior in the chassis dyno environment. An engine testbed combined with a belt drive transmission enables operation in single engine or in Powerpack (i.e. internal combustion engine including transmission) configuration as well as under steady state or dynamic operating mode. Since the belt drive transmission is integrated in the test rig, realistic inertia situation for the single engine operating test configuration is ensured.
Technical Paper

An Experimental Study of Injection and Combustion with Dimethyl Ether

2015-04-14
2015-01-0932
DiMethyl Ether (DME) has been known to be an outstanding fuel for combustion in diesel cycle engines for nearly twenty years. DME has a vapour pressure of approximately 0.5MPa at ambient temperature (293K), thus it requires pressurized fuel systems to keep it in liquid state which are similar to those for Liquefied Petroleum Gas (mixtures of propane and butane). The high vapour pressure of DME permits the possibility to optimize the fuel injection characteristic of direct injection diesel engines in order to achieve a fast evaporation and mixing with the charged gas in the combustion chamber, even at moderate fuel injection pressures. To understand the interrelation between the fuel flow inside the nozzle spray holes tests were carried out using 2D optically accessed nozzles coupled with modelling approaches for the fuel flow, cavitation, evaporation and the gas dynamics of 2-phase (liquid and gas) flows.
Journal Article

Tailored ADAS Functions Fulfilling Local Market Expectations - Time Saving Approach without Compromising the Performance Quality

2021-09-22
2021-26-0038
Modern safety and comfort features must behave country specific to the local environment and traffic conditions in order to gain end consumers’ trust and strengthening OEMs market success respectively. In order to achieve this, a new methodology was developed. In this paper, the approach for designing advanced driving assistance systems (ADAS) with a tailored controller behavior optimized for country specific market expectations like in India is described. Furthermore, the definition of objective performance and calibration targets with automated evaluation of target fulfillment will be deeply discussed. The method is focused on saving time at calibration and validation without compromising the quality of ADAS features. Local market specific driving behavior is investigated and measurement data from real-world driving collected. Data clustering via maneuver detection is performed automatically, which is saving time and effort.
Journal Article

Real-World Fuel Consumption Measurement as the Base for the Compliance to Future CO2 Regulations

2019-01-09
2019-26-0357
The gap between the officially reported CO2 values and the actual performance of the vehicle on the road is continuously increasing. Numerous studies are showing differences between the official values and the real-world measurements of more than 40% in average, with further increases year by year. The fuel consumption of passenger cars are determined as part of the vehicle certification according to Euro 6 via carbon mass balance using exhaust gas measurement. By introducing the new world harmonized driving cycle (WLTC) in September 2017, which is addressing a more realistic speed profile or traffic conditions, the gap between the certification and road test is expected to be reduced in half. Additionally the EU Commission plans to monitor vehicles more closely. From 2020, devices for recording fuel and energy consumption will become mandatory in all passenger cars and light commercial vehicles, reflecting the average real world CO2 emissions.
Technical Paper

The Hybrid IC Engine – Challenges of Hydrogen and E-Fuel Compatibility within Current Production Boundaries

2023-04-11
2023-01-0397
Increasingly stringent greenhouse gas and emission limits demand for powertrain electrification throughout all vehicle applications. Beside fully electric powertrains different configurations of hybrid powertrains will have an important role in upcoming and future vehicle generations. As already discussed in previous papers, the requirements on the combustion engine in hybrid powertrains are different to those in a conventional powertrain solution, heading for brake thermal efficiency targets of 45% and above within the product lifecycle for conventional fuels. Focus on product cost and production and assembly facility investment drives reuse of technology packages within modular powertrain technology platforms, with different combinations of internal combustion engines (ICE), transmissions, and e-drive-layouts. The goal of zero carbon operation requires compatibility of ICE for sustainable fuels.
Technical Paper

e-Fuel Production via Renewables and the Impact on the In-Use CO2 Performance

2020-09-15
2020-01-2139
The trend towards renewable energy sources will continue under the pre-amble of greenhouse gas (GHG) emission reduction targets. The main question is how to harvest and store renewable energy properly. The challenge of intermittency of the renewable energy resources make the supply less predictable compared to the traditional energy sources. Chemical energy carriers like hydrogen and synthetic fuels (e-Fuels) seem to be at least a part of the solution for storing renewable energy. The usage of e-Fuels in the existing ICE-powered vehicle fleet has a big lever arm to reduce the GHG emissions of the transport sector in the short- and medium term. The paper covers the whole well-to-wheel (WtW) pathway by discussing the e-Fuel production from renewable sources, the storage and the usage in the vehicle. It will be summarized by scenarios on the impact of e-Fuel to the WtW CO2 fleet emissions.
Technical Paper

Artificial Neural Network-Based Emission Control for Future ICE Concepts

2023-10-31
2023-01-1605
The internal combustion engine contains several actuators to control engine performance and emissions. These are controlled within the engine ECU and follow a specific operating strategy to achieve objectives such as NOx reduction and fuel economy. However, these two goals are conflicting and a compromise is required. The operating state depends on system constraints such as engine speed, load, temperature levels, and aftertreatment system efficiency. This results in constantly changing target values to stay within the defined limits, especially the legal emission limits. The conventional approach is to use multiple operating modes. Each mode represents a specific compromise and is activated accordingly. Multiple modes are required to meet emissions regulations under all required conditions, which increases the calibration effort. This new control approach uses an artificial neural network to replace the conventional multiple mode approach.
Technical Paper

Viability of Alternative Fuels to Decarbonize the World’s Largest Agricultural Tractor Market

2024-01-16
2024-26-0065
India is the market with the highest sales of agricultural tractors and the market with the highest number of agricultural tractor park, as well. Even though taking into account the lower average power of Indian agricultural tractors compared to regions with considerably larger field sizes, their cumulated diesel fuel consumption reaches a significant size. The possible use of alternative powertrains like battery-electric, especially considering the lower power of the Indian tractor market, seems feasible, but might be struggling with challenges in terms of charging infrastructure and the possibly resulting lower productivity due to required charging times. Therefore AVL proposes to investigate the use of alternative fuels for internal combustion engines, a topic which is also being discussed by other global tractor OEMs. In that context the focus is typically on higher tractor powers due to current storage limitations of battery-electric systems and other alternatives.
Technical Paper

Modeling of the System Level Electric Drive using Efficiency Maps Obtained by Simulation Methods

2014-04-01
2014-01-1875
This work presents a physical model that calculates the efficiency maps of the inverter-fed Permanent Magnet Synchronous Machine (PMSM) drive. The corresponding electrical machine and its controller are implemented based on the two-phase (d-q) equivalent circuits that take into account the copper loss as well as the iron loss of the PMSM. A control strategy that optimizes the machine efficiency is applied in the controller to maximize the possible output torque. In addition, the model applies an analytical method to predict the losses of the voltage source inverter. Consequently, the efficiency maps within the entire operating region of the PMSM drive can be derived from the simulation results, and they are used to represent electric drives in the system simulation model of electric vehicles (EVs).
Journal Article

Measurement of Piston Friction with a Floating Liner Engine for Heavy-Duty Applications

2022-03-29
2022-01-0601
The further increase in the efficiency of heavy-duty engines is essential in order to reduce CO2 emissions in the transport sector. This is also valid for the future use of alternative fuels, which can be CO2-neutral, but can cause higher total costs of ownership due to higher prices and limited availability. In addition to thermodynamic optimization, the reduction of mechanical losses is of great importance. In particular, there is a high potential in the piston bore interface, since continuously increasing cylinder pressures have a strong influence on the frictional and lateral piston forces. To meet these future challenges of increasing heavy-duty engine efficiency, AVL has developed a floating liner engine for heavy-duty applications based on its tried and tested passenger car floating liner concept.
Technical Paper

Impact of Injection Valve Condition on Data-driven Prediction of Key Combustion Parameters Based on an Intelligent Diesel Fuel Injector for Large Engine Applications

2024-04-09
2024-01-2836
The advent of digitalization opens up new avenues for advances in large internal combustion engine technology. Key engine components are becoming "intelligent" through advanced instrumentation and data analytics. By generating value-added data, they provide deeper insight into processes related to the components. An intelligent common rail diesel fuel injection valve for large engine applications in combination with machine learning allows reliable prediction of key combustion parameters such as maximum cylinder pressure, combustion phasing and indicated mean effective pressure. However, fault-related changes to the injection valve also have to be considered. Based on experiments on a medium-speed four-stroke single-cylinder research engine with a displacement of approximately 15.7 liter, this study investigates the extent to which the intelligent injection valve can improve the reliability of combustion parameter predictions in the presence of injection valve faults.
Technical Paper

Additive Manufacturing in Powertrain Development – From Prototyping to Dedicated Production Design

2024-04-09
2024-01-2578
Upcoming, increasingly stringent greenhouse gas (GHG) as well as emission limits demand for powertrain electrification throughout all vehicle applications. Increasing complexity of electrified powertrain architectures require an overall system approach combining modular component technology with integration and industrialization requirements when heading for further significant efficiency optimization. At the same time focus on reduced development time, product cost and minimized additional investment demand reuse of current production, machining, and assembly facilities as far as possible. Up to date additive manufacturing (AM) is an established prototype component, as well as tooling technology in the powertrain development process, accelerating procurement time and cost, as well as allowing to validate a significantly increased number of variants. The production applications of optimized, dedicated AM-based component design however are still limited.
Technical Paper

How Can a Sustainable Energy Infrastructure based on Renewable Fuels Contribute to Global Carbon Neutrality?

2024-07-02
2024-01-3023
Abstract. With the COP28 decisions the world is thriving for a future net-zero-CO2 society and the and current regulation acts, the energy infrastructure is changing in direction of renewables in energy production. All industry sectors will extend their share of direct or indirect electrification. The question might arise if the build-up of the renewables in energy production is fast enough. Demand and supply might not match in the short- and mid-term. The paper will discuss the roadmaps, directions and legislative boundary parameter in the regenerative energy landscape and their regional differences. National funding on renewables will gain an increasing importance to accelerate the energy transformation. The are often competing in attracting the same know-how on a global scale. In addition the paper includes details about energy conversion, efficiency as well as potential transport scenarios from production to the end consumer.
X